NF-κB信号通路与前列腺炎、前列腺癌形成的关系

张燕宇, 王婧, 黄艺顺

中国药学杂志 ›› 2020, Vol. 55 ›› Issue (20) : 1653-1658.

PDF(3808 KB)
PDF(3808 KB)
中国药学杂志 ›› 2020, Vol. 55 ›› Issue (20) : 1653-1658. DOI: 10.11669/cpj.2020.20.001
综述

NF-κB信号通路与前列腺炎、前列腺癌形成的关系

  • 张燕宇1, 王婧2, 黄艺顺1*
作者信息 +

Relationship Among NF-κB Signaling Pathways, Prostatitis and Prostate Cancer

  • ZHANG Yan-yu1, WANG Jing2, HUANG Yi-shun1*
Author information +
文章历史 +

摘要

前列腺癌是男性泌尿系统常见的恶性肿瘤之一,其患病率高,严重威胁健康和生命。目前,前列腺癌的治疗手段主要是采用雄激素剥夺治疗,但是部分细胞会发展成为雄激素非依赖性细胞,使得治疗效果不佳。在雄激素无关的前列腺癌中发现核转录因子-κB(nuclear transcription factor-κB,NF-κB)信号通路异常活化,与前列腺癌的转移和去势抵抗性前列腺癌密切相关。针对NF-κB信号通路的研究将有助于设计靶向NF-κB的治疗策略。为了更好的理解NF-κB与前列腺炎和前列腺癌之间的关系,笔者介绍了NF-κB结构与信号途径,总结了NF-κB介导前列腺炎和前列腺癌形成的关系,并讨论了如何通过阻断NF-κB达到抑制前列腺癌的发生,有望为前列腺癌治疗带来新思路。

Abstract

Prostate cancer is the most commonly occurring form of malignant cancer in males. Due to its high prevalence, health and life are seriously affected. At present, the treatment for prostate cancer is androgen deprivation therapy. However, considerable fraction of tumor cells progress to so-called castration-resistant prostate carcinoma, leading to poor treatment outcome. The aberrantly activated NF-κB signaling is associated with metastasis and castration-resistance in prostate cancer. It will be a beneficial way by targeting NF-κB to design therapeutic strategies against prostate cancer. This review introduced the structure of NF-κB and the signaling pathway in inflammation and prostate cancer for better understanding of the relationship among NF-κB, prostate cancer, and prostatitis. And the potential therapeutic strategies by blocking NF-κB in prostate cancer is discussed. It will bring a novel view to prostate cancer treatment.

关键词

NF-κB / 前列腺癌 / 前列腺炎 / 炎症 / 肿瘤

Key words

NF-κB / prostate cancer / prostatitis / inflammation / cancer

引用本文

导出引用
张燕宇, 王婧, 黄艺顺. NF-κB信号通路与前列腺炎、前列腺癌形成的关系[J]. 中国药学杂志, 2020, 55(20): 1653-1658 https://doi.org/10.11669/cpj.2020.20.001
ZHANG Yan-yu, WANG Jing, HUANG Yi-shun. Relationship Among NF-κB Signaling Pathways, Prostatitis and Prostate Cancer[J]. Chinese Pharmaceutical Journal, 2020, 55(20): 1653-1658 https://doi.org/10.11669/cpj.2020.20.001
中图分类号: R965   

参考文献

[1] SINGH H, SEN R, BALTIMORE D, et al. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature, 1986, 319(6049):154-158.
[2] ZHAO W, SUN Z, WANG S, et al. Wnt1 participates in inflammation induced by lipopolysaccharide through upregulating scavenger receptor A and NF-κB. Inflammation, 2015, 38(4):1700-1706.
[3] MEZZASOMA L, ANTOGNELLI C, TALESA V N. A novel role for brain natriuretic peptide: inhibition of IL-1beta secretion via downregulation of NF-κB/Erk 1/2 and NALP3/ASC/caspase-1 activation in human THP-1 monocyte. Mediators Inflamm, 2017, 2017:5858315.
[4] PAHL H L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 1999, 18(49):6853-6866.
[5] CHEN W, JIAN M, ZHAO Y. Effect of ginsenoside Rg3 on NF-κB p65 and its related inflammatory factors after carotid balloon injury in racts. Chin Pharm J(中国药学杂志), 2018, 53(21):1831-1835.
[6] WANG K, KARIN M. Tumor-elicited inflammation and colorectal cancer. Adv Cancer Res, 2015, 128:173-196.
[7] SFANOS K S, YEGNASUBRAMANIAN S, NELSON W G, et al. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol, 2018, 15(1):11-24.
[8] NGUYEN D P, LI J, YADAV S S, et al. Recent insights into NF-kappaB signalling pathways and the link between inflammation and prostate cancer. BJU Int, 2014, 114(2):168-176.
[9] PERLETTI G, MONTANARI E, VRAL A, et al. Inflammation, prostatitis, proliferative inflammatory atrophy: 'fertile ground' for prostate cancer development?. Mol Med Rep, 2010, 3(1):3-12.
[10] DIDONATO J A, MERCURIO F, KARIN M. NF-kappaB and the link between inflammation and cancer. Immunol Rev, 2012, 246(1):379-400.
[11] OECKINGHAUS A, GHOSH S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol, 2009, 1(4):a34.
[12] YU L, LI L, MEDEIROS L J, et al. NF-kappaB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev, 2017, 31(2):77-92.
[13] CILDIR G, LOW K C, TERGAONKAR V. Noncanonical NF-kappaB signaling in health and disease. Trends Mol Med, 2016, 22(5):414-429.
[14] PARK M H, HONG J T. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cells, 2016, 5(2):15.
[15] O′CONNOR D M, BOULIS N M. Erratum to 'gene therapy for neurodegenerative diseases' . Trends Mol Med, 2016, 22(3):266.
[16] TEGOWSKI M, BALDWIN A. Noncanonical NF-kappaB in cancer. Biomedicines, 2018, 6(2):66.
[17] OECKINGHAUS A, HAYDEN M S, GHOSH S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol, 2011, 12(8):695-708.
[18] TILBORGHS S, CORTHOUTS J, VERHOEVEN Y, et al. The role of nuclear factor-kappaB signaling in human cervical cancer. Crit Rev Oncol Hematol, 2017, 120:141-150.
[19] FUSELLA F, SECLI L, BUSSO E, et al. The IKK/NF-kappaB signaling pathway requires Morgana to drive breast cancer metastasis. Nat Commun, 2017, 8(1):1636.
[20] ROY P, SARKAR U A, BASAK S. The NF-kappaB activating pathways in multiple myeloma. Biomedicines, 2018, 6(2):59.
[21] WENIGER M A, KUPPERS R. NF-kappaB deregulation in Hodgkin lymphoma. Semin Cancer Biol, 2016, 39:32-39.
[22] YANG J T, LEE I N, LU F J, et al. Propyl gallate exerts an antimigration effect on temozolomide-treated malignant glioma cells through inhibition of ROS and the NF-kappaB pathway. J Immunol Res, 2017, 2017:9489383.
[23] MARQUARDT J U, GOMEZ-QUIROZ L, ARREGUIN CAMACHOLO, et al. Curcumin effectively inhibits oncogenic NF-kappaB signaling and restrains stemness features in liver cancer. J Hepatol, 2015, 63(3):661-669.
[24] LI R, FANG F, JIANG M, et al. STAT3 and NF-kappaB are simultaneously suppressed in dendritic cells in lung cancer. Sci Rep, 2017, 7:45395.
[25] VERZELLA D, FISCHIETTI M, CAPECE D, et al. Targeting the NF-kappaB pathway in prostate cancer: a promising therapeutic approach?. Curr Drug Targets, 2016, 17(3):311-320.
[26] WU Z, ZHAN S, HUANG Y, et al. Construction of miR 15-a-loaded nano-complex and evaluation of its anti-prostate cancer effect in vitro. Chin Pharm J(中国药学杂志), 2017, 52(3):206-211.
[27] JAIN G, CRONAUER M V, SCHRADER M, et al. NF-kappaB signaling in prostate cancer: a promising therapeutic target?. World J Urol, 2012, 30(3):303-310.
[28] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2019. CA Cancer J Clin, 2019, 69(1):7-34.
[29] MARIN-AGUILERA M, CODONY-SERVAT J, KALKO S G, et al. Identification of docetaxel resistance genes in castration-resistant prostate cancer. Mol Cancer Ther, 2012, 11(2):329-339.
[30] SERUGA B, OCANA A, TANNOCK I F. Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol, 2011, 8(1):12-23.
[31] SHAFI A A, YEN A E, WEIGEL N L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther, 2013, 140(3):223-238.
[32] MURILLO-GARZON V, KYPTA R. WNT signalling in prostate cancer. Nat Rev Urol, 2017, 14(11):683-696.
[33] LIM W, PARK S, BAZER F W, et al. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem, 2017, 118(5):1118-1131.
[34] MENG L Q, YANG F Y, WANG M S, et al. Quercetin protects against chronic prostatitis in rat model through NF-kappaB and MAPK signaling pathways. Prostate, 2018, 78(11):790-800.
[35] NUNES J J, PANDEY S K, YADAV A, et al. Targeting NF-kappaB signaling by artesunate restores sensitivity of castrate-resistant prostate cancer cells to antiandrogens. Neoplasia, 2017, 19(4):333-345.
[36] SUH J, PAYVANDI F, EDELSTEIN L C, et al. Mechanisms of constitutive NF-kappaB activation in human prostate cancer cells. Prostate, 2002, 52(3):183-200.
[37] RODRIGUEZ M, LUO W, WENG J, et al. PSGR promotes prostatic intraepithelial neoplasia and prostate cancer xenograft growth through NF-kappaB. Oncogenesis, 2014, 3:e114.
[38] NADIMINTY N, TUMMALA R, LIU C, et al. NF-kappaB2/p52: c-Myc: hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer. Mol Cancer Ther, 2015, 14(8):1884-1895.
[39] SUH J, RABSON A B. NF-kappaB activation in human prostate cancer: important mediator or epiphenomenon?. J Cell Biochem, 2004, 91(1):100-117.
[40] JIN R, STERLING J A, EDWARDS R, et al. Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone. PLoS One, 2013, 8(4):e60983.
[41] GINZBURG S, GOLOVINE K V, MAKHOV P B, et al. Piperlongumine inhibits NF-kappaB activity and attenuates aggressive growth characteristics of prostate cancer cells. Prostate, 2014, 74(2):177-186.
[42] LI Z W, HUANG J J, YANG W H. Interactive molecular mechanism between Nf2 and NF-κB interactive molecular mechanism between Nf2 and NF-κB pathways in drug induced liver injury. Chin Pharm J(中国药学杂志), 2018, 53(9):666-670.
[43] KILLIAN P H, KRONSKI E, MICHALIK K M, et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis, 2012, 33(12):2507-2519.
[44] GINZBURG S, GOLOVINE K V, MAKHOV P B, et al. Piperlongumine inhibits NF-kappaB activity and attenuates aggressive growth characteristics of prostate cancer cells. Prostate, 2014, 74(2):177-186.
[45] CAO Y, BONIZZI G, SEAGROVES T N, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell, 2001, 107(6):763-775.
[46] LUO J L, TAN W, RICONO J M, et al. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing maspin. Nature, 2007, 446(7136):690-694.
[47] GUO F, KANG S, ZHOU P, et al. Maspin expression is regulated by the non-canonical NF-kappaB subunit in androgen-insensitive prostate cancer cell lines. Mol Immunol, 2011, 49(1-2):8-17.
[48] SHUKLA S, KANWAL R, SHANKAR E, et al. Apigenin blocks IKKalpha activation and suppresses prostate cancer progression. Oncotarget, 2015, 6(31):31216-31232.
[49] LABOUBA I, LE PAGE C, COMMUNAL L, et al. Potential cross-talk between alternative and classical NF-kappaB pathways in prostate cancer tissues as measured by a multi-staining immunofluorescence co-localization assay. PLoS One, 2015, 10(7):e131024.
[50] JEONG J H, PARK S J, DICKINSON S I, et al. A constitutive intrinsic inflammatory signaling circuit composed of miR-196b, Meis2, PPP3CC, and p65 drives prostate cancer castration resistance. Mol Cell, 2017, 65(1):154-167.
[51] WANG J, YI S, ZHOU J, et al. The NF-kappaB subunit RelB regulates the migration and invasion abilities and the radio-sensitivity of prostate cancer cells. Int J Oncol, 2016, 49(1):381-392.
[52] LABOUBA I, POISSON A, LAFONTAINE J, et al. The RelB alternative NF-kappaB subunit promotes autophagy in 22Rv1 prostate cancer cells in vitro and affects mouse xenograft tumor growth in vivo. Cancer Cell Int, 2014, 14:67.
[53] JACQUE E, BILLOT K, AUTHIER H, et al. RelB inhibits cell proliferation and tumor growth through p53 transcriptional activation. Oncogene, 2013, 32(21):2661-2669.
[54] BENEDETTI G, FOKKELMAN M, YAN K, et al. The nuclear factor kappaB family member RelB facilitates apoptosis of renal epithelial cells caused by cisplatin/tumor necrosis factor alpha synergy by suppressing an epithelial to mesenchymal transition-like phenotypic switch. Mol Pharmacol, 2013, 84(1):128-138.
[55] YEMELYANOV A, GASPARIAN A, LINDHOLM P, et al. Effects of IKK inhibitor PS1145 on NF-kappaB function, proliferation, apoptosis and invasion activity in prostate carcinoma cells. Oncogene, 2006, 25(3):387-398.

基金

国家自然科学基金资助项目(21705074)
PDF(3808 KB)

267

Accesses

0

Citation

Detail

段落导航
相关文章

/